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NOTATION

r, 0, z cylindrical coordinates

R1 (z), R2 (z) = inner and outer radii, respectively, of
body of revolution

T = ply thickness

c = involute constant

N = number of plies

= angle of rotation of EIS

a = arc angle

y = tilt angle

= surface angle

S= helical angle

= meridian angle in ply pattern

S= helical convolute angle

A = constant defined by Eq. (40)

c= cylindrical involute constant

w = helical arc length of helical convolute

2 = tangent length of helical convolute

R = radius of cylinder in ply patternO

S= arc angle in ply pattern

R, = plane polar coordinates in ply pattern

z , Zmax = minimum and maximum values of Z in EIS

L = distance between reference points in
ply pattern

S = surface area of EIS

s = arc length along involute

V = volume of body of revolution
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i, , k unit vectors along 6, r, z directions,
respectively

A A A

t, s, n unit vectors on EIS

Overbars stand for parameters at arbitrary fixed point P on EIS.

Primes stand for undebulked parameters or 0' meridian.
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INTRODUCTION

Involute construction, formerly known as rosette construction,

is a popular approach being used in rocket nozzle technology for

the fabrication of exit cones and other bodies of revolution.

Such bodies are formed by laminating identical fabric-reinforced

composite plies of uniform thickness in such a way that each

ply extends to the extremities of the body in both the radial

and axial directions. Hence, the boundaries of the body are

completely defined by the ply edges. The mathematical solution

of this problem is the theme of this work.

The contemporary approach to involute construction incorpor-

ates the use of analysis and fabrication techniques that can

lead to significant pre-existing flaw distributions within the

body. Defects such as wrinkles and fabric distortion are induced

and represent the suspected source of numerous failures that

have occurred in test firings, and even in fabricated articles

prior to imposed loadings. Regions of geometrical discontinuity,

such as the neighborhood of a cylinder-cone intersection are

particularly sensitive to the formation of this initial damage.

The origin of many of these problems appears to lie in the use

of an incorrect ply pattern, i.e., the basic ply geometry

adopted does not satisfy the involute construction problem, which

requires that a prescribed volume of revolution be filled pre-

cisely with a given number of identical plies of the same constant

thickness.



The first analytical treatment of involute bodies appears

to be due to Mamrol (Ref. 1) in an unpubli shed report. Other

unpublished work was accomplished by workers at Hitco Corp. )
(Refs. 2,3). Pagano (Ref. 4) provided the first comprehensive

treatment of cylindrical involute bodies, including the appro-

priate governing equations for the stress field in an elastic

body under axisymmetric loading. Subsequently, an approximate

method was presented (Ref. 5) to establish the ply pattern for

bodies of conical shape. In the latter reference, it was assumed

that one edge of the ply pattern is a straight line that coincides

with the generator of a cone. It will be shown here that this

assumption is only valid under very restrictive conditions. In

most cases, the work in the study of involute bodies proceeds

by first establishing the theoretical surface (called the

involute surface) that satisfies the involute construction

problem, following which an approach to develop that surface,

i.e., the ply pattern generation scheme, is presented. The

inverse problem of definition of the involute surface given a

specific ply pattern was treated by Stanton and Pagano (Ref. 6),

where an axisymmetric stress field model was also derived and

used to examine the tendency of certain exit cones to delaminate

under processing conditions. Since that treatment of the

involute surface geometry was also approximate, the question of

existence of a solution to the involute construction problem was

naturally raised. In this work, we shall address this question.
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In a parallel effort with the present work, E.E. Savage

(Ref. 7) has postulated that a helical convolute surface satisfies

the requirements of the involute construction problem. We shall

provide the proof of this assertion in this presentation, as well

as to rigorously derive the complete mathematical formulation

that characterizes the aforementioned solution, including the

equations that describe the ply pattern. An experimental demon-

stration of the present formulation shall also be given, as well

as a model to characterize the kinematical response during the

debulking process, which is an important part of the fabrication

method.

3
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DEFINITION OF EXACT INVOLUTE SURFACE (EIS)

Consider a body of revolution generated by rotation of a

plane region about the Z-axis as shown in Figure 1. The boundary

of the plane region is denoted by C, and conventional cylindrical

coordinates (r, 0, Z) will be employed in the formulation. Left-

and right-hand segments of the contour C are introduced and

defined by radial coordinates r = R1 (z), R2(z), respectively.

These two segments may either constitute the entire boundary C,

as in Figure l(a), or be separated at the upper and/or lower

extremities by straight lines normal to the z-axis, such as the

case illustrated in Figure l(b). In general, the curve C must

be represented by a piecewise-continuous function.

In practice, involute consttction of bodies of revolution

such as those shown in Figure 1* employs a lamination procedure

utilizing identical plies of a constant thickness. This practice

leads to the definition of the involute construction problem,

which can be posed as a hypothetical problem that admits to a

mathematically exact treatment, i.e., determine the equations of

identical surfaces which are separated everywhere by a constant

distance T measured in the local normal direction to the surface

such that their boundaries completely define the surface of a

given body of revolution (see Figure 2).

Hence, the volume defined by the boundaries of surfaces S

is equivalent to the volume inside the body of revolution. If

the body were actually formed from material layers or plies of

thickness T whose boundaries follow the hypothetical surfaces S,

Figures are located in Appendix C

4
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interior of the body would be filled such that no gaps occur

between contiguous plies. A slight difference would exist between

the material volume and the theoretical volume of the body of

revolution because of the step-like appearance created by the

plies at the boundaries. However, this difference vanishes as

T-O and does not exist at all in the hypothetical problem. The

solution of the mathematical analog of the physical problem will

be referred to here as the exact solution and the surface S will

be called the exact involute surface (EIS).

TRANSFORMATION RELATIONS

In this section, we shall formulate the approach which

leads to the equation of the EIS. Our approach consists of

examination of the relationship that exists between two surfaces,

S and S', within the given body of revolution. The two surfaces

are identical in size, shape, and all local geometric details,

except that they are displaced from one another in the body.

We shall discuss two successive transformations, which carry S

into S', thence S' into S, such that the requirements of the

mathematical analog are satisfied (see Figure 3).

In the first transformation, each point in S translates

through the displacement Tn, where n is the local unit normal

vector. This transformation maps S into S'.

The second transformation follows from the consideration of

the geometry in the cylindrical involute problem (Ref. 4). In

that case, we have shown that an annular region can be filled

with identical curves, called involutes or spirals, which are

ll5
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related to one another byrigid body rotations about the z-axis.

Since each cross-section of our body of revolution is an annulus,

this transformation is also appropriate in the present example.

Hence, our second transformation, which carries S' back into S,

consists of a rotation through an angle 0 about the z-axis, where

0 is a constant.

The two transformations above guarantee that the volume of

a body of revolution can be filled with identical, uniformly

spaced surfaces. As the surface S may extend indefinitely, we

must truncate it at its intersection with the surface produced

by revolution of curve C.

MATHEMATICAL FORMULATION

Consider the trace of surface S that lies in the plane z =

constant. It has been shown (Ref. 4) that a plane annulus can

be filled by identical OUrves (involutes) related to each other

by rigid body rotations about z. These curves are defined by

the equation

r sin a = c (1)

where c is a constant and a, called the arc angle, is the angle

between tangents to the curve and the circle of radius r at the

same point on the curve. In order to satisfy our second trans-

formation, an equation of the form (1) must be satisfied within

each cross-section of ageneral body of revolution. Thus, the

general solution for the EIS takes the form

r sin a = c (z) (2)

where c is a function of z alone. It will now be necessary to

review some of the basic relations needed to characterize sur-

face geometry (Ref. 6).

6



Consider an infinitesimal element of a surface as shown in

Figure 4. Two right-handed systems of unit vectors are shown

in the figure: first, letting carets symbolize vector quantities,

we have the orthogonal system 1, j, fc, which lie in the positive

6, r, and z coordinate directions, respectively; secondly, the

non-orthogonal system t, s, n. Here t is the vector tangent to

the meridian 6 = constant, s is tangent to the trace of the

surface in the cross-section z = constant, and n is the normal

vector pointing away from the interior of the body. Arc angle a,

tilt angle y, and surface angle i are also shown in Figure 4, where

dr
tan y = d- (3)

Cos * = t • s (4)

and

s = 1 cos a - 3 sin a (5)

£= sin y + cos y (6)

Substitution of Eqs. (5) and (6) into (4) reveals the following

interrelationship among the three angles

cos4'= -sin a sin y (7)

and we shall restrict the ranges of the angles in this work

according to

0 < a < w12, 0 < y < n/2, r/2 < 4 < w (8)

The unit vector n is given by

nsin = t x s (9)

which, on use of Eqs. (5) and (6), becomes

n sin = I sin a cos y + 5 cos a cos y - cos a sin y (10)

7



We are now ready to invoke the first transformation of the

preceeding section, i.e., local translation along n.

We start from an arbitrary point p (r, e, z) that lies in
surface S. From this point, we construct a normal vector ATn,

which intersects S' at p' (r + Ar, 6 + A6, z + Az) and is normal

to S' at the latter point. Letting A' represent the position

vector of p', we see that

= r3 + ATi (11)

Substitution of Eq. 10 into (11) leads to

(r + Ar) 2 sin 2 r = r 2 sin 2 ' + (AT)2 cos2 Y (12)

+ 2rAT sin ' cos a cos y

along with

AT sin a Cos (sin AO = (r + Ar) sin P (13)

and

z -AT cos a sin y (14)
sin 1P

We may now write an expression for n' the unit outward normal

vector at p' in terms of a', y', and '', and the basis vectors

i, j' , and k', where

i' = i cos A8 - j sin A6 (15)A
= i sin AO + j cos A6 (16)

Substituting Eqs. (15) and (16) into this expression and using

the fact that n' 2 n, we can show that

a a E Aa = -A (17)

where a' is the arc angle at p'.

8



Let us next express Eq. (2) at point p', with

Ac = c(z + Az) - c(z) (18)

so that

(r + Ar) sin (a + Am) = c + Ac (19)

Inserting Eq. (17), this becomes

(r + Ar)(sina cosA8 - cosasinAS) = c + Ac (20)

However, because of Eq. (13), we find that

cos Ae = r sin * + AT cos y cosa (21)

(r + Ar) sin *2

Finally, putting Eqs. (13) and (21) into (20) yields

r sin a = c + Ac (22)

which, along with Eq. (2), implies that Ac = 0, or

r sin a = c = constant (23)

Hence, the EIS must satisfy Eq. (23) in order to obey the first

required transformation (ATn).

We shall now seek to establish the appropriate relations

such that the second transformation (rigid body rotation) is

satisfied. We first observe that Eq. (23) implies the following

relation for a given value of z,

8(a,Z) - -(z) = M(z) + cot 1(Z) - a(Z) - cot a(Z) (24)

since Eq. (23) is the same equation that governs cylindrical

involute geometry (Ref. 4). Here, P((z), 1(z), z) represents

an arbitrary fixed point in S, while a(z) is the arc angle at

this point, and we have chosen to regard e as a function of a and

z in this relation. Of course, a and r are related everywhere via

Eq. (23). For conceptual reas ns, one may choose the arbitrary

fixed point to coincide with the intersection of the EIS at z



with the inner or outer surface of the body of revolution, i.e.,

R1(Z) or R2(Z) as shown in Figure 1, although this is not

required.

In order to treat the rigid body rotation, it is necessary

to consider the traces of two involute surfaces, S and S" cut

by a plane z = constant since these traces map into each other

in such a transformation. As before, we begin by constructing

a vector ATn from point P such that the tip of the vector inter-

sects S' at P'(r(z) + AT, 1(z) + A6, z + 6z). Using primes to

denote functions in S' and taking Eq. (17) into account,

Eq. (24) gives

e'(a, z + Az) - (W(Z) + A-) = -(z) - A0 + cot(a(z) - A7)
(25)

- al(z + Az) - cot a'(Z + AZ)

Equation (24) with z replaced by z + Az and Eq. (25) are the

equations of the traces of S and S', respectively, at the level

z + AZ. The rigid body rotation is therefore expressed by

6'(a, z + Az) - 6(a, z + Az) = AP (26)

since points with the same a also have the same r. In Eq. (24),

AO is a constant to be evaluated later on. Carrying out Eq. (26),

with the aid of (24) and (25), leads to

AO + A = 3(z) + cot E(z) - (z + Az) - cot i(z + AZ)

Az cot T(z) (27)

c cos 3(z)

where Eqs. (13), (14), and (21) have been used, as well as

elementary trigonometric formulas. Also, we have defined

A6 = e(z + Az) - 6(z) (28)

and T(z) is the tilt angle y at P.

*10
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In order to solve Eq. (27) for AT, we only need to

determine the constants AO and y(z) in terms of known parameters

since a(Z) is known from Eq. (23) if F(z) is given, e.g., Rl(z)

or R2 (a).

Considering the angle AO first, we note that

AO 2r (29)

where AN is the number of "layers" or exact involute surfaces

corresponding to thickness AT required to fill the annular space.

Hence, we get

AN = NT (30)
AT

where N is the number of "layers" of thickness T. Therefore

O 27rAT
NT (31)

which, by virtue of Eq. (14), becomes

AO -2nAz sin 'j (Z) (32)

NT cosa(Z) siny(Z)

where j(z) is the surface angle at P.

To define the tilt angle y(z), we consider the meridian of

the involute surface S containing point P. Let this meridian

intersect the Z + Az trace of S at r = rp (a = ap). Thus, an

approximate expression for T(z) is given by

r - r(M)
tan T(z) = Az (33)

which becomes exact in the limit as Az-O.

Writing Eq. (24) at z + Az and putting e(ap, z + Az) = 6(z)

yields the result

AT = ap + cot ap - a(z + Az) - cot -(z + Az) (34)

pi
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which brings Eq. (27) to

AO = 3(z) + cot a(z) - a - cot a - Az cot T(z) (
pp c Cos -(z)

Now using Eqs. (23) and (33) and elementary trigonometric

identities, we can show that

= (z) tan Y(z) tan a(z) Az (36)
F (z)

in the limit as Az-0, so that

cot ap = cot 3(z) + tan -(z)Az (37)c Cos az
Finally, substituting Eqs. (32), (36), and (37) into (35) while

passing to the limit Az-0, we find that

2ffsin T(z) tan V(z) + cot y(z)
NT cos c(z) sin y(z) c cos d(z) c cos c(z) (38)

tan E(z) tan T(z)

r( z)
which, after some elementary manipulations and the use of Eq. (7),

yields

tan 7(z) - A (39)
cos c(z)

where

A 1(472 - N2T2) (40)

which is a constant. Clearly, we have

c > NT (41)

which controls the minimum value of c that can be utilized.

Given the expressions (32) and (39), we may now return to

Eq. (27) to determine A6. We now define

A3 = 3(z + Az) - a(z) (42)

Introducing Eqs. (39), (42), and (32), in conjunction with (7),

into (27) and letting Az-0, we arrive at

12



-=A

d8= dz + cot 2 U(Z) dz (43)

On integration over the range (z0 , z), Eq. (43) gives
(Z ( Z + --z + colt 3-- a(z)(z) -8(Zo) =-(z-Z) a(Zo) +ct(Zo) -(z

0 C 0 0 0 (44)

- cot a(z)

and by substitution into Eq. (24), we get

E)(, ) -AU( (z -z)+ 3(z )  + cot 3(z O  - (z)
0 C 0 0 0 (45)

- cot c(z)

which, along with (23), represents the general equation of the

EIS. The point corresponding to a = '(zo), 8 = 9(Zo) = 8(E, zo),
0 0 0

z = zo simply represents an arbitrary point on the EIS. Also,

since this point is arbitrary, Eq. (39) can be written as

tan y (a, z) cos At(z) (46)

so that the relation (46) is valid everywhere on the EIS.

An important feature inherent in the present formulation is

the clear statement of the "input" or prescribed parameters

necessary to define the EIS. Any combination of parameters

that serve to uniquely define the following constants and

functions constitute a necessary and sufficient input data set,

c, N, T, R1 (z), R2 (z), 8o  (47)

where 80, the 8-coordinate of any point in R1 (z), or R2 (z), is

only needed to define the angular position of the EIS, not its

shape or size, and R1 (z) and R2 (z) need only be piece-wise

continuous functions. While contemporary manufacturing procedures

and the approximate treatment (Ref. 5) assume that a trace of

the involute surface in a meridional plane coincides with the

13
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generator of a cone, the input parameters (47), which define

the EIS, prohibit this assumption, in general. However, if we

invoke the small a assumption c 2<<, we find that Eq. (44) is

satisfied by the conical trace i(z) = KZ provided that A = K,

where A is given by Eq. (40) and K is a constant. In this case

then, the conical trace is a good approximation.

Apparent singularities occur in Eqs. (27), (32), (35), and

(38) for the case y(z) = 0. These are removed by appealing to

Eqs. (7) and (14), which give, for example

Lira AzYi) . z/ -AT cos a (48)

The situation '(z) = 0 arises only when the constant A vanishes.

This leads to
_NT

cc - (49)

and corresponds to a cylindrical EIS, which is the significance

of subscript c in Eq. (49). The present equations now reduce

identically to those given earlier (Ref. 4) for cylindrical

involute surfaces. In this regard, it is important to note that

the generation of a cylindrical body does not require that the

involute surface be cylindrical. An example of this will be

shown later here.

* The surface given by Eqs. (45) and (23) represent the exact

solution for the mathematical problem of filling space with

identical, uniformly spaced surfaces. These equations represent

a helical convolute surface (Ref. 8). In the next section,

we shall examine some of the basic parameters of the helical

convolute since they lead to an expedient approach to develop

the surface, i.e., to construct the ply pattern.

_14



DEVELOPMENT OF EIS

We now proceed to demonstrate that the EIS is a helical

convolute of a cylinder of radius c. To start, we shall review

the geometrical construction of the helical convolute (Ref. 8),

which will be helpful in establishing the equation of the

developed surface, or ply pattern.

The helical convolute is generated by a straight line which

moves in space such that it remains tangent to a helix. The case

where the end point of the line moves in a plane normal to the

axis of the cylinder, which is important in the construction of

involute exit cones; is depicted in Figure 5. In this figure, the

helix on the cylinder of radius c is shown as OQT. The helical

convolute is generated by PQO such that the sum of the helical arc

length w = OQ and the tangent length Z = QP remains constant.

In other words, the helical convolute is generated by wrapping a

right triangular sheet of height OS and hypotenuse PQO on the

cylinder. As a result of this geometrical construction, we can

show that the coordinates of points P and Q are related by

r 2 = (z - ZQ) 2 tan2 6 + c 2

(50)
sin (n/2 - e + Q) = c/r

By direct substitution, one can demonstrate that the relations

(50) identically satisfy the EIS equations (45) and (23),

provided that

tan 6 = A (51)

Now the angle 6 is defined by
cdO

tan 6 = (52)

15



If we let the helix OQT represent the intersection of the EIS

and the cylinder of radius c, Eq. (45) gives

dO = A dz (53)

Substituting Eq. (53) into (52) shows that Eq. (51) is satisfied.

Hence, the postulate that the EIS takes the form of a helical

convolute (Ref. 7) has been proven. Finally, the tangent length

Z is given by

(Z ZQ) 1+ A 2  (54)

In order to employ the more convenient base point 0, it is only

necessary to substitute the coordinates of point 0 in place of

those for Q in the above relations.

Since the EIS is a helical convolute, it represents a

single-curved, developable surface (Ref. 8). It follows that the

helix of radius c is mapped into the arc of a circle of radius

Ro, where

R = c (55)
0 si

which, because of Eq. (51), becomes

R = c (1 + X2) (56)

Also, the lengths w and £ (Figure 5) are preserved in the mapping

so that the path of any point such as P (which is an involute

of a circle of radius c) is carried into an involute of a circle

of radius Ro . Reference to Figure 6 indicates that the mapped

image of point P is described by polar coordinates R, Q ,where

w/2 + cot X- - cot X (57)

R sin X Ro  (58)

16

,.- *..*



and
R

tan X = 0 ( 59)
0 (z - z 1 )

Using the first of Eqs. (50), along with (51) and the relation

that derives from the preservation of arc length w, namely

Z-z _ Ro (® + X - w/2) (60)Q P /i -+A 2

we find that Eq. (57) can be put into the form

cot X= +-A2 /rc2--C 2 _ z + z ) + cot 0  (61)Ro  A P) 0

and finally, using Eqs. (59) and (56), we get

cot = -A A2  (62)

c 1 +A 2

which can also be expressed as

A
cot X A cot a (63)

Hence, once the EIS has been defined, an arbitrary point (r, e,
z) in space is mapped into (R, ®) in developed space by solving

Eq. (62) for X and substituting into (57) and (58), after using

(56) and (59) to compute Xo and Ro . It must be emphasized that

we have implicitly assumed that z - z > 0 so that z must be
p P

chosen as the minimum value of z. The value of z corresponds to
P

the point 0 in Figure 5 at which w = 0 and is easily found from

the equations of the EIS by repeated use of the relation

Z P r c2  (64)
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Here r and z are the coordinates of any point on the EIS and

Eq. (64) is used to search for the minimum value of z P, which

will always correspond to a point on the outer boundary of the

body of revolution being generated. Finally, since the EIS is

a developable surface, we shall dispense with the distinction

between the mathematical and physical solutions of the involute

construction problem; they only differ because of the finite

compliance of the sheet material and the "steps" on the boundary

of the body constructed of sheets of constant thickness, as

discussed earlier.

ILLUSTRATIVE EXAMPLE

As an example of the use of the present model, the body

of revolution having the profile shown in Figure 7 was built by

involute construction. The geometry of this body is similar to

that of contemporary rocket nozzle exit cone structures. The

ply material used in the construction was heavy paper having a

constant thickness of 0.01 in. Using this value for T, with

c = 0.15 and N = 92, which satisfy the inequality of Eq. (41),

the ply pattern generated via the present model, Eqs. (56)-(59),

(62), and (64), is shown in Figure 8. The mapped positions of

several involute trajectories (z = constant) and meridians

(6 = constant), which approximate straight lines for reasonably

small values of a, are also shown in the figure. The range of

y in this body is given by 12.560 < y < 12.780.

Following the ply pattern generation, the body of revolution

was constructed by laminating 92 plies such that their inner

18
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boundaries rested on the surface of the male mandrel defined by

radii r = R1 (z). Pre-forming the plies is convenient, though

not necessary. A pre-formed ply in the shape of the EIS and

the male mandrel are shown in Figure 9, as well as the body

itself. In practice, the plies would be bonded together, however,

in the present case, they are held in place by supporting rings

as shown in Figure 9. The existence of this body, in accordance

with the geometry prescribed in Figure 7, serves as an experimental

demonstration of the validity of the present mathematical model.

The body shown in Figure 9 could not be built using contemporary

practice since the heavy paper material has no mechanism to

produce the severe distortions associated with that practice.

Thus the potential to build relatively defect-free structure is

another virtue of the new approach.

There exists a sensitive dependence between ply pattern

design and number of plies. For .xample, ply patterns to con-

struct the same body as in Figure 9 with the same values of c

and T, but corresponding to N = 90 and 91 are shown in Figures

10 and 11, respectively. This relationship is also accompanied

by marked variations in tilt angle y. While minimal variation

occurs within a given body, the average values of y for the

cases N = 90, 91 are approximately 17.60, 15.20, respectively.

The equations that define the general solution for the EIS

imply certain inequalities that must be satisfied by the EIS

parameters to guarantee a geometrically admissible solution.

For example, because of Eq. (23), the constant c must be equal
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to or less than the smallest value of r in the body of revolu-

tion being generated. In development space, the angle G must be

single-valued, so that Eqs. (60) and (58) require

z max - zp < 2Trc /1 +A 2  
(65)

where Zmax is the largest value of z in the body of revolution.

Furthermore, the parameters c, T, and N must satisfy Eq. (41).

Finally, fabrication constraints, which can limit the maximum

and/or minimum size of a body, and can impose restrictions on

central angle 6, must also be taken into account in the design

of involute bodies.

We have remarked earlier that cylindrical bodies can be

constructed via non-cylindrical involute surfaces. This has been

illustrated in the forming of the cylindrical region of the body

shown in Figure 9. Conversely, we can show that non-cylindrical

bodies can be formed via cylindrical involute surfaces. This

may be illustrated by invoking Eq. (49) to define c and generating

the ply pattern corresponding to Figure 7 according to the

present model. All of our equations remain valid, with (27),

(32), (35), and (38) being subject to the interpretation dis-

cussed in connection with Eq. (48). For values of the parameters,

N = 200 and T = .01, the ply pattern shown in Figure 12 is

generated.

DEBULKING KINEMATICS

In practice, involute bodies are fabricated from sheets of

cloth-reinforced composite material. In its initial (as received)

form, this preimpregnated cloth material is uncured and relatively
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thick (approximately twice the final cured thickness). It is

in this form that the material is cut into the ply pattern and

laminated against specially designed tooling. Because of the

large thickness in this form, the involute surface differs

considerably from that existing in the final state, which has

governed the ply pattern design. The system is then debulked

under a slight temperature rise and the application of pressuri-

zation on either the inner or outer surface, with the opposite

surface being controlled by tooling. Subsequent curing, carbon-

ization, and/or graphitization establish the final dimensions

of the billet.

Because of the above fabrication procedure, it is important

to define the configuration of the involute surface corresponding

to material in its initial, undebulked form. It is also necessary

in the execution of the debulking phase to pressurize against

tooling that controls the profile of either final surface, i.e.,

Rl1 W, or R2 (z) in Figure 1. It is also desirable that the

latter ply boundary remains in contact with the tooling throughout

the process. Unfortunately, the edge of the ply pattern in the

initial (undebulked) configuration cannot, in general, coincide

with the same control surface as that in the final configuration.

An exact solution for the initial configuration is possible if

we abandon the control surface requirement. Thus, we simply

formulate the inverse problem: given the ply pattern, N, and a

new ply thickness, define the corresponding EIS. In this case,

we assume that the ply pattern construction via the involute
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method (Figure 6) remains unchanged while a new value of c

is computed by use of Eqs. (56) and (40), i.e.,

(cn3 _ (C')2 + INT' 2 = 0 (66)

where primes denote undebulked parameters. Equations (59) and

(62) are now solved with the aid of (56) to give the corresponding

r, z coordinates,

- Z1 cot X (67)
P A 0

and

(r')2 = c'RoCOt 2X + (c')2  (68)

while a single value of z' (say z,) can be prescribed arbitrarily.

While the approach outlined in the previous paragraph is

exact, it is not suitable for modern involute exit cone manufacture.

Therefore, we shall now consider an alternate method which permits

the appropriate edge of the ply pattern to lie extremely close to

the control surface over a significant region in the initial con-

figuration provided the ply pattern boundary has no discontinuities

in the region. In this approach, the two end points of the ply

pattern boundary in the (smooth) region, which we shall call

reference points, lie on the control surface. The approach

proceeds as follows:

a. Determine the ply pattern corresponding to the final

(cured) state in the usual manner and compute the distance L

between the two reference points in the R ® plane. We let

the initial position of the first point coincide with its final

location, while the second point is merely constrained to lie on

the control surface.
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b. For the first approximation, let the initial r, 0, z

coordinates of the second point coincide with their final values.

Using Eqs. (45) and (23), compute the value of the constant c'

for the initial configuration.

c. Compute the initial mapped coordinates (R', ® ') of the

first reference point by use of Eqs. (56)-(59) and (62) directly.

Determine the initial spatial (r, z) position of the second point

by using the facts that it must lie on the control surface and

its image is at distance L from that of the first point in the

ply pattern. Now compute the (R', ® ') coordinates of the

second point. It should be noted that the @' coordinate

involves an arbitrary (non-essential) constant z'p"

d. At this time, we have the mapped coordinates of each

reference point in two coordinate systems, (R, () and (R', ').

Since the two images of each reference point must coincide, we

now establish the relationship between the two sets of coordinates.

e. By using the previously derived relationship, determine

the (R', G') coordinates of the ply pattern. Finally, apply

the inverted form of Eqs. (56)-(59) and (62), along with ('i)

and (23), to define the spatial positions of points on the ply

pattern boundary.

Adjustment of the constant c' can be accomplished to achieve

a closer fit between the initial ply pattern boundary and the

control surface, whereupon steps (a) through (e) are repeated.

The above procedure involves only elementary geometric relations

in addition to repetitious use of Eqs. (56)-(59), (62), (45), and

(23). Hence, these equations are not shown here. Use of this
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procedure (first approximation only) leads to the profile shown

in Figure 13 for the ply pattern of Figure 8, where the profile

is based upon a ply thickness of .02 in, while the reference

points referred to in the approach are selected as the extremities

of the inner conical surface. All points on the ply boundary do

not contact this surface although the deviations are imperceptible

at the scale of Figure 13.

CONCLUDING REMARKS

The general problem of involute construction - formation of

a body of revolution by laminating identical sheets of constant

thickness - has been treated in detail. The two transformations

that were applied - movement of each point of the solution

surface a constant distance in the surface normal direction

followed by a rigid body rotation of the surface - guarantee

complete filling of the required volume with no gaps or overlapping

regions. The exact involute surface (EIS) thus satisfies all

requirements provided the profile of the body of revolution is

piecewise-continuous. The question of the uniqueness of the

particular pair of transformations that were applied to carry the

EIS into itself has not been addressed. However, the solution

that satisfies the particular transformations and input data (47),

i.e., Eqs. (45) and (23), does represent a unique surface, and,

of course, satisfies the problem requirements. Thus, the very

important question of existence of a solution to the general

problem of involute construction has been settled.

We have rigorously shown that the EIS assumes the geometric

form of a helical convolute, which was evidently first postulated
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in unpublished work by Savage (Ref. 7). The helical convolute

is a surface of single curvature that is capable of development

by standard methods of descriptive geometry (Ref. 8). The closed-

form equations that describe this developed surface, called the

ply pattern, have also been presented here. These are Eqs.

(56)-(59), (62), and (64). Certain inequalities that must be

satisfied by the EIS parameters, including Eqs. (41) and (65),

have also been established.

The existence of a developable solution surface implies that

a defect-free body is a potential product of this work. This is

in sharp contrast to the severe fabric distortion and wrinkles

observed (Ref. 9) in contemporary involute exit cones. Demon-

stration of this point and some validation of the mathematical

formulation have been provided by the construction of the

experimental model shown in Figure 9.

Finally, an approach to describe the kinematics of the

debulking process has been established. By use of this model,

one can approximate quite accurately the condition that a ply

boundary remains in contact with a fabrication tooling surface,

provided the ply boundary contains no discontinuity in the

region. Another use of this model is to predict the displace-

ment field as a function of instantaneous ply thickness in the

debulking process.
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APPENDIX A

VOLUME AND SURFACE AREA

Letting S represent the area of the EIS and referring

to Figure 4, we observe that

dS = ds dz sin (A-i)
cos y

where ds is the infinitesimal arc length of an involute in the

plane z = constant. From Reference 4, ds is given by

ds = -dr (A-2)

sin a

Hence, (A-1) becomes

dS -sin * dr dz (A-3)
cos y sina

Substitution of Eqs. (7), (23), and (46) and use of elementary

trigonometry brings (A-3) to

dS = -c(l + A2)0 cosa dadz (A-4)sin' a

Integrating and substituting Eqs. (23) and (40) yields

S [aR(z) - R? (z)] dz (A-5)NT = 2-1

where the nomenclature of Figure 1 has beenused. Hence, the

known result

V = NTS (A-6)

is identically satisfied by the present formulation. Here, V

stands for the volume of the body of revolution.
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APPENDIX B

HELICAL ANGLE

An important parameter in the analysis of mechanical response

of involute exit cones is the helical angle (Ref. 6), defined

as the local angle between the warp fibers in a ply and the

meridian. Referring to Figure 14, we have the relation

®w - ®t (B-l)

where ®w is the constant angle between the warp direction in

the ply pattern and an arbitrary axis and ®t gives the orienta-

tion of the mapped meridian (denoted by t in Figure 14).

In Figure 14, the dashed line marked s represents the mapped

position of the local vector s. Observe that the angle 4, given

by Eq. (7), is preserved in the mapping. Hence, we see that

= /2 + X + (B-2)

Hence by use of Eqs. (57) and (61)-(63), we arrive at

t = T +  A [A(z -Z) - cote] (B-3)V + A 2 c

which, along with (B-l), produces the desired result.
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APPENDIX C

FIGURES
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Figure 2. Lxact Involute Surface of a Body of Revolution
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